IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 October 2024, accepted 2 December 2024, date of publication 9 December 2024, date of current version 17 December 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3513713

== RESEARCH ARTICLE

An Adversarial Attack on ML-Based loT Malware
Detection Using Binary Diversification Techniques

MAINA BERNARD MWANGI “, (Graduate Student Member, IEEE),
AND SHIN-MING CHENG ', (Member, IEEE)

Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
Corresponding author: Maina Bernard Mwangi (d10915815 @mail.ntust.edu.tw)

This work was supported in part by the National Science and Technology Council (NSTC), Taiwan, under Grant
113-2221-E-011-156-MY3 and Grant 113-2221-E-011-157-MY3.

ABSTRACT The integration of machine learning (ML) has revolutionized malware detection, enabling
accurate identification of subtle distinctions between malware and benignware. As the threat landscape
continually evolves and new malware strains emerge, conventional signature-based detectors are becoming
increasingly inadequate, leading to a growing reliance on ML-based detectors. However, ML-based detection
systems are particularly vulnerable to adversarial attacks, where subtle alterations to input samples can
deceive detectors into misclassifying malware as benignware, highlighting the need for robustness studies,
as such misclassifications can lead to significant damage. To this end, we stage a black-box attack on IoT
malware detection systems, specifically targeting structure-based detectors, which are predominant due to
their ability to detect malware across diverse CPU architectures in IoT environments. Our strategy employs
semantic-preserving binary diversification techniques, including function inlining, branch function insertion,
control flow graph flattening, and basic block merging and reordering, to modify malware binaries and evade
detection. We train a multi-structural substitute detector (based on a combination of control flow graph and
function call graph features) on a large-scale dataset of IoT ELF binaries, achieving detection rates of up
to 98.24%. Using explainable Al (XAI), we transfer the attack to four structural target detectors, achieving
evasion rates of up to 100% on certain detectors, with an average binary size increase of just 8.35%. The
modified samples evade detection by a state-of-the-art adversarial detector and several commercial antivirus
engines, highlighting the persistent challenge of defending against adversarial threats and emphasizing the
need for enhanced and multi-faceted defense mechanisms.

INDEX TERMS Adversarial attack, binary diversification, Internet of Things (IoT) malware detection,
machine learning.

I. INTRODUCTION
Machine learning (ML) has become integral to modern

success rates in identifying both known malware and novel
threats [7], [8]. However, ML systems are particularly

cybersecurity, marking a breakthrough in the detection
of zero-day malware. The success of ML techniques has
led cyber defense researchers and antivirus vendors to
increasingly adopt these methods to address the evolving
landscape of malware variants [1], [2]. ML-based malware
detection essentially involves analyzing benign and malicious
files, extracting features through static and dynamic analysis,
and utilizing these features to train ML models [3], [4],
[5], [6]. These detection systems have demonstrated high

The associate editor coordinating the review of this manuscript and

approving it for publication was Ye Liu

vulnerable to adversarial attacks, where slight modifications
to input samples can deceive detectors into misclassifying
malware as benignware, posing severe cybersecurity risks.
Adversarial attacks pose even greater challenges in
resource-constrained [oT systems. Machine learning-based
IoT malware detection remains less developed compared to
its Windows counterpart. The limitations in [oT environ-
ments, such as restricted computational resources and diverse
CPU architectures, necessitate lightweight and efficient solu-
tions, making direct adaptation of Windows-based techniques
difficult [6]. To address these challenges, researchers in IoT
malware detection have predominantly relied on structural

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

185172

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-7576-692X
https://orcid.org/0000-0002-9796-0643
https://orcid.org/0000-0001-9156-9515

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

IEEE Access

features, such as control flow graphs (CFGs) and function call
graphs (FCGs) [9], [10], [11]. These features are particularly
effective for detecting malware across the diverse CPU
architectures in IoT systems, as noted by Li et al. [12].

Similarly, adversarial attacks on IoT malware detection are
still in their infancy compared to those targeting Windows
systems. Most studies on adversarial attacks in the IoT
domain focus on payload injections into malware samples and
involve feature-space manipulations. For instance, [13], [14]
embed graphs from benign samples into the malware CFGs
to evade detection. Likewise, Esmaeili et al. [15] propose a
GNN-based adversarial detector that involves merging CFGs
from benign and malware samples to generate adversarial
samples, learning the distribution of benign samples to
filter out the adversarial ones. Sandor et al. [16] append
extra bytes from malware and benign samples into malware
binaries to evade detection, followed by adversarial training
to harden the detector. Abusnaina et al. [17] demonstrate
that most ML IoT malware detection approaches are
vulnerable to simple manipulations like packing, stripping,
and padding. Khormali et al. [18] introduce the COPYCAT
attack, appending adversarial images to malware for IoT and
Windows detection evasion. Ngo et al. [19] utilize reinforce-
ment learning to modify PSI-graphs with dummy vertices
and edges, followed by adversarial training to improve the
detector robustness. While padding and payload injections
can trick some malware detectors, these methods can often be
mitigated by removing the padded bytes before classification.

This study evaluates the robustness of ML-based IoT
malware detection systems against adversarial attacks,
focusing on structural detectors due to their prominence
in IoT environments. We introduce a novel semantic-
preserving black-box adversarial attack on IoT structural
detectors. A multi-structural substitute detector is trained on
a large IoT dataset using CFG and FCG graphical features,
with Explainable Al guiding binary-level manipulations to
induce misclassification. Advanced binary diversification
methods—function inlining, branch function insertion, con-
trol flow graph flattening, basic block merging, and basic
block reordering—are used to modify malware binaries
at both the basic block and function levels, successfully
evading detection. To our knowledge, this is the first use
of these techniques in adversarial attacks on ML-based
malware detection. The generated adversarial examples
demonstrate high transferability, evading detection by four
structural detectors, several commercial antivirus engines,
and a recent IoT adversarial detector. Our main contributions
are summarized below.

1) We introduce a novel black-box functionality-
preserving adversarial attack to evaluate the robustness
of ML-based structural IoT malware detectors. Our
approach employs advanced binary diversification
techniques, such as function inlining, branch function
insertion, control flow graph flattening, basic block

VOLUME 12, 2024

merging, and basic block reordering, to modify
malware samples and evade detection. Unlike common
methods like payload injection and padding, our
strategy does not leave obvious signatures, making it
more challenging to defend against.

2) We compile a comprehensive IoT dataset containing
over 248,000 Executable and Linkable Format (ELF)
binary files from various CPU architectures, including
benign and malicious samples from diverse [oT mal-
ware families, for our experiments. We then train a
multi-structural substitute detector, utilizing both CFG
and FCG graphical features, achieving high detection
rates of up to 98.27%

3) Leveraging SHAP (SHapley Additive exPlanations)
analysis [20], we execute the attack on the substitute
detector, generating practical adversarial examples
with minimal attack cost. These samples exhibit high
transferability, evading four detectors [8], [9], [12], [21]
trained on different structural features, with evasion
rates up to 100% and an average binary size increase
of just 8.35%. Additionally, the adversarial samples
evade arecent IoT adversarial detector [15] and several
commercial antivirus engines.

The remainder of the paper is organized as follows:
Section II covers related work and background information,
Section III presents the proposed methodology, Section IV
discusses the experimental results and analysis, and Section V
concludes the study.

Il. BACKGROUND INFORMATION AND RELATED WORK
This section reviews background information and related
work, including ML-based malware detection, a literature
review of adversarial attacks on malware detection, and
binary diversification techniques.

A. MACHINE LEARNING MALWARE DETECTION

Malware detection is critical across various computing plat-
forms, including Windows, Android, and IoT. Considerable
efforts have been devoted to effectively detecting malware.
Traditional approaches, rooted in signature-based methods,
rely on extensive databases of known malware signatures.
When a suspicious file is encountered, its signature is
compared against those stored in the database. However,
this method’s reliance on predefined signatures renders it
ineffective against novel and unknown malware variants and
inadequate for emerging cybersecurity threats. To overcome
these limitations, and inspired by the success of machine
learning in other domains, ML models have been adapted
for malware detection, demonstrating strong generalization
capabilities for identifying new and unseen (zero-day) mal-
ware variants [22]. ML-based malware detection comprises
three main steps: data collection, feature engineering, and
model training and evaluation.

185173

IEEE Access

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

1) DATA COLLECTION

This step involves collecting and labeling sufficient malware
and benign samples. Labeling is typically done using mal-
ware analysis tools like VirusTotal, which detects malware
across about 70 modern antivirus engines [23]. However,
detection results for the same file may vary across engines.
To address this, either the most recognized antivirus engine
is chosen, or a voting-based approach is used.

2) FEATURE ENGINEERING

As machine learning models only operate on numeric
inputs, feature engineering is a pivotal step in ML malware
detection. It involves extracting intrinsic features from the
collected files and converting them into corresponding
numeric representations, which are then used to train the
models to distinguish between benign and malicious files.
In malware detection, features fall into three categories based
on their extraction method: static, dynamic, and hybrid [3],
[24].

Static features, derived directly from samples without
the need for execution, are widely employed in malware
detection due to their ease of extraction and effectiveness. For
instance, printable strings [1], [11], [24], byte sequences [25],
[26], PE/ELF headers [5], [27], and grayscale images [3],
[22], [28], [29] have proven effective in detecting Windows,
Android, and IoT malware.

Dynamic features involve executing binaries in isolated
environments like virtual machines or sandboxes and mon-
itoring runtime statuses of system resources, networks,
registries, and files. Metrics such as CPU usage, I/O requests,
and memory usage are then used to train malware detec-
tors [30], [31]. File status features, obtained through counting
and logging of created, deleted, modified, or accessed files,
have also proven effective in malware detection [31].

Hybrid features are extracted through a combination of
static and dynamic analysis methods. Hybrid features such
as opcodes (n-gram sequence, images, frequency, etc.) [11],
[28], [29], function call graphs (FCGs) [8], [10], Control flow
graphs (CFGs) [9], [11], and APU/system calls (sequence,
list, graphs, etc.) [1], [4] have been successfully utilized in
malware detection.

3) MODEL TRAINING AND EVALUATION

After extracting numeric features, selecting a suitable
machine-learning model for malware detection is crucial.
Numerous algorithms, including Deep Neural Networks
(DNNs), Convolutional Neural Networks (CNNs) [9],
[29], Long Short-Term Memory (LSTM) networks, Multi-
Layer Perceptrons (MLPs) [8], Graph Neural Networks
(GNNs) [12], Support Vector Machines (SVMs) [1], Ran-
dom Forests (RFs) [8], and Decision Trees (DTs) [27],
have been proposed and rigorously evaluated for malware
detection. These models exhibit varying success rates
depending on different experimental setups and parameter
settings.

185174

B. ADVERSARIAL ATTACKS ON MALWARE DETECTION
Despite recent advancements, ML-based malware detection
systems remain inherently vulnerable to adversarial attacks
that seek to undermine their decision-making processes [13],
[40]. These attacks can be categorized based on the
attacker’s space and knowledge level. The attacker’s space
categorization includes feature-space attacks, which involve
modifications to the input features, and problem-space
attacks, which entail modifying real-world inputs like binary
executables or source code to deceive the target detector.
Based on the attacker’s knowledge, adversarial attacks can
be categorized as white-box or black-box attacks. In white-
box attacks, the attacker has complete knowledge of the target
model, while in black-box attacks, adversaries typically have
minimal information, usually only the model’s prediction
output. Gray-box attacks fall between these two extremes,
with varying levels of knowledge.

From these categorizations, four fundamental types of
adversarial attacks are identified in the existing literature
and discussed below. While this paper focuses on adversarial
attacks in IoT malware detection, this section will also cover
related attacks on Windows and Android platforms to provide
a comprehensive overview of the relevant literature.

1) FEATURE-SPACE WHITE-BOX ADVERSARIAL ATTACKS
Esmaeili et al. [15] propose a structural attack on CFG-based
IoT malware detectors, similar to the GEA and SGEA
frameworks by Abusnaina et al. [13], [14]. Their approach
merges control flow graphs (CFGs) from benign samples
with target malware CFGs to create adversarial CFGs
intended for a graph neural network (GNN)-based detector.
They then train an adversarial detector to recognize benign
CFG properties and filter out adversarial CFGs before
classification.

In another attack on IoT malware detection, Ngo et al. [19]
propose a reinforcement learning-based method that per-
forms adversarial attacks on PSI (printable string infor-
mation) graphs by adding dummy vertices and edges to
deceive detectors. They counter these attacks with adversarial
retraining.

Kreuk et al. [32] and Suciu et al. [33] successfully execute
an adversarial attack against MalConv [7], a prominent raw
byte-based Windows malware detector. Kreuk et al. utilize
the Fast Gradient Sign Method (FGSM) to append adversarial
payloads to the end of the file (append-FGSM) and into the
slack regions of the sample (slack-FGSM). Suciu et al. [33]
extend this approach by comparing slack-FGSM and append-
FGSM, observing that slack-FGSM is more effective than
append-FGSM.

Al-Dujaili et al. [35] and Verwer et al. [34] employ FGSM
for white-box adversarial attacks on API Call List-based PE
malware detectors. These attacks alter the malware’s binary
feature vector by flipping bits in the feature space. Verwer
et al’s attack dynamically adjusts the flipped bits based

VOLUME 12, 2024

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

IEEE Access

TABLE 1. A summary of the literature review on adversarial attacks. The short forms in the table are as follows: BB for black box, WB for white box, FS
for feature space, PS for problem space, and FP stands for functionality preserving.

Attacker’s

Attacker’s

Attack Name Platform K Detector Modification Strategy FP
nowledge Space
Esmaeili et al. [15] IoT WB FS CFG-based Graph embedding None
Ngoetal. [19] IoT WB ES PSI-graph Graph manipulations RL
SKS?J(E?SI:[E?]]’ Windows WB FS MalConv [7] Append/inject payload FGSM v
gﬁgx‘glgﬁ]ﬁ 135] Windows WB FS API Call-based Add bogus API calls Gradient-based
AMAO [36] Windows WB FS Image-based NOPs insertion FGSM, C&W
ATMPA [37], IoT, Windows ~ WB FS Image-based Append noise Gradient-based v
COPYCAT [18] ’
gg]/;\ A[1[:;]4,] IoT WB PS CFG-based Graph embedding None v
Sandor et al. [16] IoT WB PS Byte-based Appending Bytes Customized
Abusnaina et al. [17] IoT WB PS Multiple Packing, padding, stripping Binary manipulations v
Demetrio [38] Windows WB PS MalConv [7] PE header modification Gradient-based
AMB [39], Aryal et al. [40] Windows WB PS MalConv [7] Padding/Payload injection Gradient-based
RAMER [41] Windows WB PS MalConv [7] Content shifting Gradient-based
DOS header extension

Sharif et al. [42] Windows WB PS MalConv [7],AvastNet Binary diversification Gradient-based v
HRAT [43] Android WB PS MaMaDroid,MalScan FCG-graph modification RL v
MalGAN [44], Windows BB FS API call-based API calls insertion GAN
Improved-MalGAN [45]
Hu and Tan [46] Windows BB FS API call sequence-based API calls insertion Generative model
GADGET [47] Windows BB FS API call sequence-based API calls insertion Transferability v
BADGER [48] Windows BB FS API call sequence-based API calls insertion Evolutionary algorithm v
SRL [49] Windows BB FS CFG-based Semantic NOPs insertion RL v
Gym-malware [26], [50]. Functinality-preservin
eym-plus [51], Windows BB PS General unctinaiity-p e RL v

. modifications
gym-malware-min [52]
AIMED [53], Functinality-preserving Evolutionary
MDEA [54], Windows BB PS General, MalConv [7] modifications algorithms v
GAMMA [38] ’
ARMED [55] Windows BB PS General Func.tl_nah.ty-preservmg Randomization v

modifications

GAPGAN [56] Windows BB PS MalConv [7] Appending bytes GAN v
MalFox [57] Windows BB PS General Obfuscation techniques GAN v
Lucas et al. [58] Windows BB PS MalConv (7], others Binary diversification Hill climbing v
AndroidHIV [52] Android BB PS MaMaDroid [59], Drebin [60] Code Injection Gradient-based v
EvadeDroid [61] Android BB PS MaMaDroid [59], Drebin [60] Payload injection Randomization v
This work ToT BB PS Structural [8], [9], [12], [21] Binary diversification Explainability/Greedy v

on solution quality, effectively evading detection by adding
irrelevant API calls.

Other attacks, such as ATMPA [37], COPYCAT [18], and
AMADO [36] are aimed at image-based detectors. In ATMPA,
Liu et al. [37] initially convert malware into a grayscale
image and then utilize FGSM and C&W to generate adversar-
ial examples. Similarly, COPYCAT by Khormali et al. [18]
employs generic adversarial attacks to generate an adversarial
image, which is subsequently appended to the original mal-
ware image. Park et al. [36] propose the AMAO adversarial
attack, wherein a non-executable adversarial image is first
generated using off-the-shelf adversarial attacks. They then
attempt to maintain functionality by inserting semantic NOPs
into the original malware, making it as similar as possible to
the generated non-executable adversarial image.

2) PROBLEM-SPACE WHITE-BOX ATTACKS

Abusnaina et al. [13] introduce Graph Embedding and
Augmentation (GEA), a structural adversarial attack on
CFG-based IoT malware detectors. GEA induces misclassi-
fication by inserting a benign code into the target malware
sample, directly modifying its CFG. Subsequently, they
propose Sub-GEA (SGEA) [14], which reduces the required
embedded graph size for misclassification.

VOLUME 12, 2024

In another study, Abusnaina et al. [17] evaluate the robust-
ness of various machine-learning IoT malware detectors
against simple functionality-preserving modifications, such
as padding, packing, and stripping. Their findings confirm
that these detection systems remain largely vulnerable to such
manipulations.

Sandor et al. [16] propose two adversarial strategies for
IoT byte-based malware detection: Chunker, which appends
chunks of malware to itself, and Disguiser, which embeds
malware in benign files. The generated adversarial examples
are then used to retrain and harden the target detector.

Kolosnjaji et al. [39] introduce AMB (Adversarial Mal-
ware Binary), a gradient-based attack specifically tailored
for PE byte-based malware detectors such as MalConv [7].
This method involves appending adversarial bytes, generated
via gradient descent, to the end of the original malware
binary. Aryal et al. [40] similarly apply gradient-based meth-
ods to generate adversarial examples by injecting code
into intra-section caves, successfully evading the MalConv
detector [7].

Demetrio et al. [38] employ the integrated gradient
explainability technique to assess the feature importance of
MalConv detector [7]. Realizing MalConv’s reliance on PE
header features, they then perform a white-box attack by

185175

IEEE Access

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

modifying specific bytes in the PE binary’s DOS header,
successfully evading detection.

Implementing two functionality-preserving modifications,
Shift and Extend, Demetrio et al. [41] develop the RAMEn
attack framework against the MalConv detector. By shifting
the content of the first section of the PE file and extending the
DOS header, the authors inject a carefully crafted adversarial
payload, successfully evading detection.

Sharif et al. [42] introduce functionality-preserving binary
diversification techniques for adversarial attacks on malware
detection to enhance attack effectiveness and stealthiness.
They employ code displacement and in-place randomization
to conduct a white-box attack using gradient ascent, ulti-
mately achieving high evasion rates.

Zhao et al. [43] introduce the Heuristic Optimization
Integrated Reinforcement Learning Attack (HRAT), a code-
level structural attack against graph-based Android malware
detection. HRAT involves subtle modifications to Function
Call Graphs (FCGs), including node deletion, insertion, and
edge manipulation.

3) FEATURE-SPACE BLACK-BOX ATTACKS

Hu and Tan [44] propose the MalGAN attack against an API
call list-based PE malware detector in a black-box setting
by training a substitute model. Adversarial examples are
generated by appending irrelevant API calls to the original
malware samples. Kawais et al. [45] extend MalGAN to
Improved-MalGAN, addressing limitations of the original
version by using different API call lists to train MalGAN and
the substitute detector.

In another study, Hu and Tan [46] devise a generative
model to evade RNN-based PE malware detectors. They
generate spurious API call sequences using a generative
RNN and insert them into the API call sequence of
the original malware. A similar strategy is employed by
Rosenberg et al. [47] in an attack named GADGET, which
targets detectors trained on API call sequences. Utilizing
the transferability property, GADGET first trains a surrogate
model, conducts a white-box attack, and then heuristically
uses the generated adversarial API call sequences to evade the
target detector. Subsequently, Rosenberg et al. [48] propose a
similar attack framework named BADGER, which limits the
number of queries made to the target detector.

In [49], Zhang et al. introduce SRL, a functionality-
preserving reinforcement learning-based attack against
graph-based (CFG) PE malware detectors. This attack
employs a reinforcement learning agent to iteratively select
semantic NOPs for insertion into the CFG blocks of the
original malware until the generated adversarial samples
successfully evade the target detector.

4) PROBLEM-SPACE BLACK-BOX ATTACKS

This category represents the most realistic and challenging
adversarial attacks, as they are completely agnostic to specific
malware detectors. Black-box attacks in the problem space
often use strategies like heuristic algorithms, evolutionary

185176

algorithms, reinforcement learning, and GANs. For exam-
ple, Anderson et al. [26], [50] employ reinforcement learning
in their Gym-malware attack framework to automatically
generate functionality-preserving adversarial examples that
deceive static malware detectors and antivirus engines. Gym-
malware’s success inspires further research [51], [62], [63].
Some studies expand the action space [51], while others
reduce it and use deterministic sequence selection to improve
effectiveness and stealth [62], [63].

Castro et al. [55] introduce ARMED (Automatic Random
Malware Modifications), which employs random algo-
rithms to apply nine functionality-preserving modifications
from [50] and [26] to malware samples until evasion is
achieved. They assess the functionality of the resulting
adversarial samples using the Cuckoo sandbox. Similarly,
Chen et al. [64] generate adversarial examples by randomly
appending blocks of data from benignware to malware,
successfully evading the MalConv [7] detector.

Some attacks use evolutionary algorithms, such as AIMED
by Castro et al. [53], which applies nine format-preserving
modifications using genetic programming. AIMED iter-
atively modifies the malware binary, achieving a 50%
speed increase over randomization. Similarly, the MDEA
uses a genetic algorithm to generate adversarial examples
with ten functionality-preserving modifications [54], while
GAMMA [38] employs the same strategy to modify malware
files through section injection and padding.

Yuan et al. [56] propose the GAPGAN framework, which
utilizes Generative Adversarial Networks (GANSs) to deceive
the MalConv [7] detector. The framework trains a generator
and discriminator to create adversarial payloads appended
to malware samples. The discriminator simulates a black-
box attack, achieving up to a 100% evasion rate. Similarly,
Zhong et al. [S7] develop MalFox using a Convolutional
GAN to generate adversarial samples that preserve the
original functionality of malware and evade detection by
antivirus engines.

Lucas et al. [58] introduce a black-box adversarial attack
using binary diversifications, such as in-place randomization
and code displacement. Unlike the white-box version [42],
this method uses a hill-climbing algorithm and accepts
transformations only if the benign probability increases after
querying the model.

Chen et al. [52] extract and modify APK source code by
injecting non-executable code and repackaging it, altering
features like permissions, API calls, and CFG structure to
evade detection. Similarly, Bostani et al. [61] use payload
injection in malware samples to deceive Android malware
detectors.

From the reviewed literature, it is evident that few
adversarial attacks specifically target IoT malware detection.
Most rely on padding and code injection methods, which
can be easily identified and filtered before classification.
In many studies, these attacks are conducted in the feature
space and assume white-box access, which is less realistic
in real-world scenarios. As discussed above, only two papers

VOLUME 12, 2024

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

IEEE Access

(a) Malware Detector

(b) Diversification

BB_density

Techniques
__ R
1 - = -_ ------ Al
! Dataset P, Feature Set i 1 Action Set '
o V——— 1
: Dataset X F_Edges . ! !
. w “ ML Explainer ; 1|[Branch Function ||1
(] —_ 1 1
1 5 !
. 2 : SVM CFG Flattening |*
erging
1 Malware E BB_Edges DNN : : :
1 Dataset © ' ||[BB Reordering |1
' 2 e
' S P 1
1 Q 1

[

Malware

Disassembler
A

A
1]
Y
7]
[7]
[1]
3
g
[1]
=

Feature Set

A Y
= 1
s Phllticiedhd SR .
& 1 | Detectors |
2 F_Edges o 1
w i RF 1
o F_Density : 1 1
2 : b svm
3 > - > Ly AE
e BB_Nodes b [KNN] [
o 1 !
e BB_Edges : : [DNN] :
§ __BB_d.ensity I Sl Rl
g g ! Failed !
<« :

—[Sequence Selection Algorithm g
JK

FIGURE 1. The proposed attack framework: AE denotes Adversarial Example, ‘BB_’ prefixes indicate CFG-based features, and ‘F_" prefixes

represent FCG-based features.

on PE malware detection have explored binary diversification
in this context [42], [58]. When implemented correctly,
binary diversification preserves the original functionality
of the binary while modifying functional parts, making it
stealthier and more challenging to defend against. Therefore,
we employ binary diversification to manipulate the structural
properties of binaries and evade detection.

C. BINARY DIVERSIFICATION TECHNIQUES

Binary diversification, designed to enhance security against
attacks like code reuse, injection, and memory corrup-
tion [65], [66], [67], involves creating multiple program
versions with identical functionality. Lucas et al. [58] and
Sharif et al. [42] pioneered its application in adversarial
contexts, using semantic-preserving modifications like in-
place randomization and code displacement to bypass
raw byte-based PE malware detection. Building on this,
we propose an attack framework that uses advanced binary
diversification to evade IoT graph-based malware detectors.
Unlike Lucas et al.’s method, which relies on instruction-level
changes, our approach incorporates structural binary manip-
ulations, such as function inlining, branch function insertion,
control flow graph flattening, basic block merging, and basic
block reordering [65], [66] (discussed in Section III-C).
Additionally, we leverage explainable Al (XAI) and a greedy
algorithm, differentiating our strategy from Lucas et al.’s [58]
use of reinforcement learning.

VOLUME 12, 2024

Ill. PROPOSED METHOD

In this section, we present the proposed attack framework,
detailing the system model, feature importance analysis,
action set, and adversarial example generation algorithm.
Figure 1 illustrates the workflow, consisting of four modules
that will be discussed in detail later in this section.

A. SYSTEM MODEL

1) THREAT MODEL

Our attack scenario assumes the adversary has black-box
access to the target detector, meaning they can only
receive the prediction confidence that a file is benign or
malicious after querying the model. The goal is to use
binary diversification to modify malware samples in the
problem space until they are misclassified as benign by the
target structural detector while preserving their malicious
functionality. With limited black-box access, we build a
multi-structural substitute detector trained on control flow
graph and function call graph features, execute the attack, and
transfer it to the target detector.

2) PROBLEM FORMULATION

In this paper, X" represents the input space (problem space),
which includes ELF binary files. Each binary sample x € X
is associated with a label y €), where Y = {0, 1}. Using
reverse engineering, we transform each binary sample x € X

185177

IEEE Access

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

into an n-dimensional feature vector z € Z, as defined in (1).
7:X+— ZCR. (D

Specifically, by leveraging the Angr [68] and Radare2 [69]
frameworks, we extract control flow graphs and function call
graphs from the ELF binary files and utilize NetworkX [70]
to extract the graphical features described in Section I1I-A3.
Given the restricted black-box access, the adversary is limited
to obtaining prediction probabilities from the target detector
D : Z — [0, 1]. The adversary’s primary objective is to
modify the malware sample x € X to mislead the target
detector D into misclassifying the malware as benignware.
The proposed attack method is defined as

z=1t(x +6) = t(x),
7€ Z, andx e X, 2)

where § is the perturbation of the malware samples in the
problem space, which entails functionality-preserving mod-
ifications achieved through binary diversification techniques
discussed in III-C.

To effectively execute the attack, we employ the
SHAP [20] algorithm from explainable Al (XAI) to identify
the most influential features for the detector ID. The
explainability analysis, based on the model’s prediction
results, determines the positive or negative contribution of
each feature. The contribution of the i-th sample to the
predicted probability can be expressed as:

Wim], ()

where w; ; represents the j-th feature’s contribution for the i-
th sample. To determine the most influential features for the
model prediction, we select the target features based on the
following constraint:

1 n—1 1 m—1 1 n—1
;Z():!Wi,j! > ;Z(;Z!wi,k!),)
=

k=0 i=0

YD, zi) = wi = [Wio, Wil, -+, Wi, -

for all j in the range O, 1, ..., m.

Next, we apply binary-level modifications that specifically
target these influential features to deceive the detector into
classifying a malicious file as benign. This approach focuses
on manipulating the most critical features. Our attack strategy
is designed to work seamlessly within the problem space,
preserving the original functionality of the sample while
enhancing the attack’s imperceptibility.

3) FEATURE SET

To train the substitute detector, we extract structural fea-
tures at both the basic block and function levels. Using
Radare2 [69], we derive function call graphs (FCGs) from all
training binaries and compute various graph properties with
NetworkX [70], including nodes, edges, density, connected
components, reciprocity coefficient, and the minimum, max-
imum, and mean values of closeness centrality, betweenness
centrality, degree centrality, and shortest path. For basic

185178

block-level features, we use the Angr framework [68] to
extract control flow graphs (CFGs) and compute the same
set of graphical features as for FCGs. In total, we generate
34 features from both CFGs and FCGs (see Table 2) to
train the substitute detector, referred to as a multi-structural
detector. Preliminary experiments indicate that training on
both CFG and FCG features yields a more robust detector
compared to training on either feature set alone.

TABLE 2. Feature set for multi-structural detector.

FCG Features (Function level) \ CFG Features (BB level)

F_nodes BB_nodes

F_edges BB_edges

F_density BB_density

F_CC BB_CC

F_reciprocity BB_reciprocity

F_ (Mean, Max, Min)CloCent BB_ (Mean, Max, Min)CloCent
F_ (Mean, Max, Min)BtwCent BB_ (Mean, Max, Min)BtwCent
F_(Mean, Max, Min)DegCent BB_ (Mean, Max, Min)DegCent
F_ (Mean, Max, Min)ShortPath BB_ (Mean, Max, Min)ShortPath

B. FEATURE IMPORTANCE ANALYSIS
The foundation of our imperceptible adversarial attacks
is depicted in part (a) of Figure 1. After training the
substitute detector, we use the SHAP [20] technique to
analyze feature importance and understand the correlation
between each feature and the model’s prediction results.
Figure 2 shows the distribution of SHAP values for the
top 20 features, enabling an intuitive analysis of the
predictions. Each row represents the distribution of a
feature’s SHAP values across all samples, with higher-ranked
features having more influence. The color intensity of
each point, representing a test dataset sample, indicates its
corresponding SHAP value. We select the top 12 influential
features to target for modification using binary diversification
techniques. These features include six from the FCGs:
F_MaxCloCent, F_MaxShortPath, F_MaxBtwCent,
F_MeanShortPath, F_reciprocity, and F_CC,
as well as six from the CFGs (basic block level):
BB_MaxShortPath, BB_MeanBtwCent, BB_MaxBtw
Cent,BB_density,BB_reciprocity,and BB_nodes.

The SHAP analysis results, illustrated in Fig. 2,
provide several key insights. Notably, the model is
more likely to classify a sample as malicious when
the FCG features F_MaxCloCent, F_MaxBtwCent,
and F_reciprocity have higher values. Consequently,
our strategy involves reducing the values of these fea-
tures through structural modifications implemented using
binary diversification techniques. Conversely, lower val-
ues of the features F_MaxShortPath, F_CC, and
F_MeanShortPath increase the likelihood of a sample
being classified as malicious. Therefore, we aim to increase
the values of these features to cause the malware samples to
be misclassified as benign.

At the basic block level, features such as BB_nodes,
BB_MaxShortPath, BB_MaxBtwCent, as well as
BB_reciprocity, exhibit a positive correlation with a

VOLUME 12, 2024

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

IEEE Access

sample’s classification as malware. Our strategy, therefore,
is to reduce these features’ values, thereby deceiving the
target detector into misclassifying malicious samples as
benign. Conversely, features such as BB_MeanBtwCent
and BB_density show a negative correlation with a
sample’s classification as malware. As such, our approach
involves increasing the values of these features to mislead
the detector into misclassifying malware as benign.

High
F_MaxCloCent e oo e——
BB_MaxShortPath o ®crcnrm cf——
F_MaxBtwCent - -._..‘...
F_MaxShortPath e e
F_reciprocity .
F_MeanShortPath —+—- .
BB_MeanBtwCent oz o
F_CC o—“—- o
BB_nodes === 2
BB_MeanDegCent o ;
BB_density s o :::’
BB_reciprocity o=l 8
F_edges =g w
F_MaxDegCent ey
BB_edges =4
BB_MeanShortPath =
BB_MaxBtwCent o coffm o
BB_MaxDegCent o c—t .
F_MeanBtwCent e ©0
F_MinShortPath e

02 -01 00 01 02
SHAP value (impact on model output)

FIGURE 2. The SHAP value distribution of testing dataset top 20 features
when label = malicious (RF).

C. ACTION SET

Based on the feature importance analysis discussed above,
we develop five functionality-preserving modifications to
alter the binary structure at both the basic block and function
levels. These modifications utilize binary diversification
techniques originally proposed to protect against code-reuse
attacks and similar threats [65], [66], [67]. When imple-
mented correctly, these techniques preserve binary semantics,
as demonstrated by Wang et al. [67], who generated diverse
ELF binary versions using various diversification methods.
To mislead structural target detectors, we adopt several
techniques employed by Wang et al. [67], including function
inlining, branch function insertion, control flow graph
flattening, basic block merging, and basic block reordering,
which are detailed below.

1) FUNCTION INLINING

Function inlining is an optimization technique used in
compilers. It involves replacing function calls with the
body of the called function (callee) at the call site. To do
this, the call instructions are replaced by jump and push
instructions to maintain the original semantics. In each
iteration, we randomly select a function, excluding the main
function, and inline it at its direct call sites if its size is

VOLUME 12, 2024

less than 300 bytes. For each inlined function, its return
instruction is changed to a jump instruction, targeting the
instruction adjacent to the original call site in the caller
function. This transformation significantly alters the structure
of the function call graph by reducing the number of edges
and nodes, thus reducing the values of F_MaxCloCent,
F_MaxBtwCent,and F_reciprocity.

2) BRANCH FUNCTION INSERTION

Branch function insertion (shown in Fig. 3) is a technique
that substitutes jump instructions with function calls to a
predefined “‘branch routine” function, redirecting the control
flow to the original jump destination. In each iteration,
we randomly select 1% of the jump instructions for conver-
sion into function calls. These calls are directed to simple
functions that reroute the flow to the original destination
addresses of the jump instructions. This modification, while
minimally impacting the size and performance complexity,
significantly alters the binary’s structural properties by
increasing the number of nodes and edges, thereby achieving
the desired effect on features F_MaxShortPath, F_CC,
and F_MeanShortPath.

FIGURE 3. Branch function insertion.

3) CONTROL FLOW GRAPH (CFG) FLATTENING

This method, as shown in Fig. 4, transforms a function’s
control flow graph into a “switch™ structure using dispatcher
blocks to redirect execution flow while preserving the
program’s functionality [65], [66]. In this study, we avoid
obfuscating functions with indirect jumps due to the complex-
ity of determining control flow destinations. Given the high
computational cost of CFG flattening, we adopt a conserva-
tive approach by flattening only a small, randomly selected
subset of functions. Specifically, in each iteration, we ran-
domly select 1% of functions without indirect jumps for CFG
flattening. This modification significantly alters the structure
of a function’s CFG and achieves the desired effects on
features such as BB_MaxShortPath, BB_MaxBtwCent,
BB_MeanBtwCent, and BB_density.

4) BASIC BLOCK MERGING
Basic block merging consolidates two basic blocks into one,
adjusting flow control instructions to preserve semantics.

185179

IEEE Access

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

FIGURE 4. Control flow graph flattening.

In each iteration, we randomly select five pairs of basic blocks
for merging. Each pair must belong to the same function
and be directly connected with exactly one incoming and
one outgoing connection. This process significantly alters the
binary’s structure at the basic block level without introducing
significant overhead in size or performance complexity.
Block merging achieves the desired outcomes of reducing the
values of BB_MaxShortPath and BB_nodes as well as
increasing the value of BB_density.

5) BASIC BLOCK REORDERING

Basic block reordering involves changing the relative posi-
tions of two or more basic blocks. To maintain functionality,
additional control transfers are introduced, which increases
the number of edges in the control flow graph. During each
iteration, we examine functions with more than three basic
blocks and randomly adjust the positions of a selected pair.
While this modification increases the number of edges and
achieves desired effects on features BB_MaxShortPath,
BB_density, and BB_MeanBtwCent, it can also com-
plicate the graph’s structure, potentially leading to higher
performance costs.

D. ADVERSARIAL EXAMPLE (AE) GENERATION
ALGORITHM

In this subsection, we present the details of the algorithm
behind the attack framework depicted in Fig. 1, part (c).
The target detector DD takes as input the feature vector z
extracted from the binary sample x and outputs a confidence
score, D(z) — [0, 1]. If the score exceeds 0.5, the sample
is classified as malware; otherwise, it is labeled benign. Our
primary goal is to modify the malware sample x using binary
diversification techniques discussed in III-C until the target
detector classifies it as benign with a confidence score below
0.5, i.e., D(z) < 0.5. To this end, we design Algorithm 1,
a greedy algorithm specially tailored to effectively deceive
the target detector while minimizing the attack cost.

In each iteration, we start with an ELF malware binary
and transform it from the problem space x to the feature
space z using the transformation function T. In particular,
we employ the Angr [68] and Radare2 [69] frameworks to
extract graphical features (z) from the control flow graph and

185180

Algorithm 1 Diversification-Based Adversarial
Attack
Input : Malware sample (x), Target Detector (D),
Action set (A), Maximum stagnation (N),
Epsilon (¢ ~ 0.1).
Output : Adversarial example (X), Selected sequence
().
X <« x,8 < ¢, step < 1,7 < 1(X);
while D(z) > 0.5 and step < N do
Proba,;, < D(z),
best_a < ¢;
r < UniformRandom(0, 1);
if r < € then
best_a < A[RandomlInteger(0, (]A| — 1))];
end if
else

for a € Ado

~Im, . ~
Tasb <« Disassemble(%);

x;’?,ﬁ <~ Diversiﬁ(i%’,’l, a, step);

FMP < Reassemble(iob);

ZMP <« T(X"P),

if D(zZ)™?) < Proba,,;, then
Proba,, < D(z)"P);
best_a < a;

end if

end for

if best_a = ¢ then

step < step + 1;

continue;

end if

end

step < 1;

S < S Ubest_a;

Xasm < Disassemble(X);

Xasm < Diversify(Xqsm, best_a, step);
X < Reassemble(X);

z <~ 1(X);

end while

return x, S

function call graph derived from the ELF binary. We then
feed the extracted feature vector z into the target detector
D to obtain a prediction probability. If the probability is
greater than 0.5, indicating that the sample is classified
as malware, we disassemble the binary into its assembly
code, select an action from the action set .4, and apply the
action to the disassembled code. We then reassemble the
binary, transform it into the feature vector z, and evaluate
its prediction probability. This process is repeated for all
actions in .4, and the action resulting in the lowest prediction
probability is selected. If no action reduces the confidence
score, the step counter is incremented. To handle stagnation,
a maximum stagnation limit N = 10 is introduced; if
the confidence score does not change in 10 consecutive

VOLUME 12, 2024

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

IEEE Access

iterations, the algorithm terminates and moves to the next
sample. To facilitate exploration and avoid local minima,
arandomized parameter is used during action selection; with
probability €, a random action is chosen from A instead
of the best-performing action. This process continues until
the prediction probability of the transformed binary is below
0.5 or the maximum stagnation limit is reached.

It is noteworthy that the disassembly, modification,
and reassembly of binaries require careful handling to
mitigate potential errors. In our implementation, we uti-
lize an open-source disassembly-reassembly tool proposed
by Wangetal. [71], which is specifically designed for
the automatic disassembly of executables in a manner
that supports their subsequent reassembly into functional
binaries.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the experimental results and analysis.
It begins with an overview of the dataset used in our
experiments, followed by a detailed evaluation of the
detection results for the substitute detector and the four
structural IoT detectors [8], [9], [12], [21] used to assess
the proposed attack. Next, the efficacy of the structural
attack is examined, followed by a transferability analysis
of the generated adversarial examples against these four
IoT detectors, an adversarial detector [15], and commercial
antivirus engines.

A. DATASET

To evaluate the effectiveness of the proposed attack
framework, a large-scale dataset comprising 248,276 IoT
Executable and Linkable Format (ELF) binary files repre-
senting diverse CPU architectures, including x86-64, x86,
ARM, SPARC, PowerPC, and MIPS, was compiled. Sample
labeling was conducted using VirusTotal [23], leveraging its
extensive database of over 70 antivirus software vendors. The
final classification of samples was determined by a majority
voting criterion based on the VirusTotal detection report,
establishing both the class label and the specific malware
family associated with each malicious sample.

TABLE 3. Substitute detector results in %.

Algorithm Accuracy Precision Recall F1 Score
RF 98.24 98.30 98.27 98.27
KNN 96.84 96.77 96.90 96.82
SVM 95.61 95.44 95.81 95.58
DNN 97.19 97.73 96.77 97.24

The dataset comprised 115,823 benign and 132,453
malware [oT ELF files spanning different families, including
Mirai, Android, Tsunami, Bashlite, Hajime, Dofloo, Xord-
dos, and Pnscan. Mirai emerged as the predominant family,
underscoring its prevalence within the IoT domain. The
dataset was split, with 80% designated for the training set and
20% for the test set.

VOLUME 12, 2024

B. IoT MALWARE DETECTION

1) MULTI-STRUCTURAL SUBSTITUTE DETECTOR

Upon data preparation, we built a multi-structural detector
to serve as our substitute detector in the proposed black-box
attack. This detector was trained on a comprehensive set of
34 features extracted from both the FCGs and CFGs of the [oT
ELF binaries, as explained in section I1I-A3. We trained and
selected the best four ML models, including Random Forest
(RF), K-Nearest Neighbors (KNN), Deep Neural Networks
(DNN), and Support Vector Machines (SVM), achieving
accuracy scores ranging from 95.61% to 98.24%. Detailed
results are presented in Table 3.

2) ALASMARY ET AL. [9] MALWARE DETECTOR

To implement the malware detector proposed by [9],
we utilized r2pipe, a Radare2 Python API, to extract the
FCGs from the binaries [69]. Subsequently, we employed
NetworkX [70] to compute various graphical properties of the
FCGs as proposed by [9]. In total, 23 features were extracted
and used to train RF, KNN, DNN, and SVM machine learning
models. We obtained detection results ranging from 87.01%
to 97.09%, as detailed in Table 4.

3) GRAMAC MALWARE DETECTOR [21]

We also implemented the structural malware detector pro-
posed by [21] to further assess the efficacy of the proposed
attack. This detector is based on the caller-callee relationships
of sensitive API calls. Specifically, we used radare2 to extract
API call graphs and subsequently employed NetworkX to
extract various graphical features. Seven features—number
of nodes, edges, indegree, outdegree, loops, connected
components, and parallel edges—were used to train RF,
KNN, DNN, and SVM models. The detection results range
from 86.16% to 97.42%, as presented in Table 4.

4) WU et al. [8] MALWARE DETECTOR

We implemented the malware detector proposed by [8] to
further evaluate our proposed structural attack. This detector
leverages structural features such as nodes, edges, and
density, as well as graph embedding features extracted using
Graph2Vec. It enhances function-call graphs by unifying
user-defined functions (UDFs) through matching opcode
sequences and assigning universal identifiers. RF, KNN,
MLP, and SVM models were trained, yielding impressive
results, as detailed in Table 4.

5) Ll et al. [12] MALWARE DETECTOR

We also retrained the Graph Neural Network (GNN)-
based malware detector proposed by Lietal.[12]. This
method integrates semantic information from Opcodes with
structural information from function call graphs through
three modules: an instruction-level module for semantic
extraction, a structure-level module using GraphSAGE for
graph embeddings, and a classification module with a
Multi-Layer Perceptron (MLP) for malware detection. This

185181

IEEE Access

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

TABLE 4. Structural l1oT malware detection results in percentage (%).

Alasmary et al. [9] Detector Gramac Detector [21] Wau et al. [8] Detector Li et al. [12] Detector
-E RF KNN | SVM | DNN RF KNN | SVM | DNN RF KNN | SVM | MLP MLP
% Accuracy | 97.09 | 96.72 | 87.01 | 95.24 | 97.42 | 95.53 | 86.16 | 91.86 | 98.61 | 98.60 | 98.88 | 98.70 98.98
§ Precision | 97.06 | 96.74 | 86.94 | 95.53 | 97.78 | 96.04 | 81.78 | 90.24 | 99.12 | 98.56 | 99.06 | 98.65 98.03
5 Recall 97.11 | 96.67 | 87.07 | 95.61 | 94.00 | 91.80 | 80.87 | 87.64 | 97.24 | 98.46 | 98.57 | 98.46 98.88
F1-Score | 97.08 | 96.79 | 86.98 | 95.57 | 95.85 | 93.87 | 81.82 | 88.92 | 98.15 | 98.55 | 98.46 | 98.55 98.77

detector achieved an accuracy of 98.98%, precision of
98.03%, recall of 98.88%, and F1 score of 98.77%.

Evasion Rate Vs Number of Iterations

1.0 ’

0.9 // P e P s nel
0.8 / y //’

R Ps

WA,
5 0.5 / /

g

Ay T
L]
o1 —— DNN |

—e— SVM

0.0 - '

0 10 20 30 40 50 60 70 80 90 100

Number of Iterations

FIGURE 5. Evasion rate Vs Number of iterations.

C. DIVERSIFICATION-BASED ADVERSARIAL ATTACK
To evaluate the effectiveness of the proposed attack,
we assembled a test set of 544 IoT ELF malware binaries from
the x86 CPU architecture. Using the pre-trained substitute
detector discussed previously, we generated adversarial
examples with Algorithm 1 across Random Forest (RF),
K-Nearest Neighbors (KNN), Deep Neural Networks (DNN),
and Support Vector Machines (SVM) models. With a minimal
attack cost, defined by the number of iterations and the
percentage change in binary size, we produced effective
adversarial examples. Specifically, the average percentage
changes in the size of the modified binaries for KNN, RF,
DNN, and SVM are 8.35%, 12.61%, 15.84%, and 22.51%,
respectively. Figures 5 and 6 illustrate the variation in evasion
rates with changes in the number of iterations and binary size,
respectively.

To assess the robustness of each model, we tested the
effectiveness of adversarial examples generated by one model
on other models within the substitute detector. Our results

185182

Evasion Rate vs % Change in Size (Bytes)

1.0
0.9
V. /
0.8
e
0.7 4 f
/
o 0.
Sos| il A
; 7
0317 ‘ —— KNN
0.2 —e— RF -
A/ —— DNN
0147 / —— SVM
0.0 f f
0 5 10 15 20 25 30 35 40 45 50

Percentage Change in Size (Bytes)

FIGURE 6. Evasion rate Vs % Change in size.
Substitute Detector Models

RF KNN SVM DNN
! ! 100

RF

80

KNN

60

SVM

-40

Substitute Detector Samples by:

-20

DNN

FIGURE 7. Transferability within the substitute detector.

show that the Support Vector Machine (SVM) model, with the
lowest detection rate, is the most robust against adversarial
examples from other models. In contrast, despite having high
detection rates, the K-Nearest Neighbors (KNN) model is
the least robust. Figure 7 illustrates the transferability of
adversarial examples generated by one model to others within
the substitute detector.

VOLUME 12, 2024

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

IEEE Access

Alasmary et al. Detector Models
F SVM DNN

20.08 22.41 90

RF

80

47.04 18.38 22.13 70

KNN
|

60

-50

SVM

-40

Substitute Detector Samples by:

-30

DNN

-20

FIGURE 8. Evasion rate on [9] detector.

Gramac Detector Models
RF KNN SVM DNN

i
75.00 80.66

51.88 67.70

100

RF

90

KNN

80

-70

Substitute Detector Samples by:
SVM

- 60

DNN

FIGURE 9. Evasion rate on [21] detector.

D. TRANSFERABILITY ANALYSIS

1) EVADING THE STRUCTURAL MALWARE DETECTORS

First, we tested the generated adversarial examples on the
detector by Alasmary et al. [9], achieving high evasion rates
of up to 99.07%. The SVM and DNN models proved more
resilient compared to KNN and RF. Figure 8 shows a heatmap
demonstrating how samples generated by the substitute
detector models deceive the Alasmary et al. [9] detector.

We also evaluated our generated samples on the Gramac
detector [21], achieving evasion rates of up to 100%, with the
lowest being 51.88%. The results are detailed in Figure 9.

Similarly, the adversarial examples were successful on the
Wau et al. [8] detector, achieving evasion rates of up to 100%
with a minimum of 30.30%. Detailed results are shown in
Figure 10.

The GNN-based detector by Li et al. [12] proved the most
resilient compared to the other detectors. The adversarial
examples generated by the SVM model were the most
effective, attaining an evasion rate of 74% on the GNN-
based detector. Samples generated by the RF, DNN, and
KNN models achieved evasion rates of 62.01%, 53.79%, and
30.31%, respectively.

In further experiments, we evaluated how limiting the
allowed change in binary size affects the evasion rate.
Our results show that generating adversarial examples
increases the binary size, potentially impacting performance.

VOLUME 12, 2024

Wu et al Detector Models
RF KNN SVM MLP

100

RF

90

80

KNN

70

- 60

SVM

-50

Substitute Detector Samples by:

-40

DNN

FIGURE 10. Evasion rate on [8] detector.

Consequently, we restricted the maximum allowable change
in binary size to 30% and studied its effect on the evasion rate
of the generated samples across the four structural malware
detectors. The results, detailed in Table 5, indicate evasion
rates exceeding 97% for some detectors.

2) EVADING ESMAEILI et al. [15] ADVERSARIAL DETECTOR
Esmaeili et al. [15] generated adversarial control flow graphs
(CFGs) by merging the CFGs of selected benign IoT samples
with those of the target malware. They then trained a
GNN-based adversarial detector to learn the characteristics of
benign CFGs, enabling it to identify and filter out adversarial
CFGs before classification. We tested the CFGs of our
generated adversarial examples on this detector to determine
whether they would be flagged as adversarial. The adversarial
detector did not flag our adversarial CFGs and misclassified
95.9% of them as benign.

3) EVADING COMMERCIAL ANTIVIRUS ENGINES

To further evaluate the effectiveness of our attack approach,
we submitted the generated adversarial examples to Virus-
Total [23] and compared the detection reports with that of
the original malware samples. The original malware samples
were flagged as malicious by an average of 44.84 antivirus
engines. In contrast, the adversarial samples generated by
SVM, DNN, RF, and KNN were flagged by 29.00, 28.97,
29.35, and 29.21 engines, respectively. This indicates that
more than 15 antivirus engines were deceived by our
adversarial examples. Detailed results are shown in Figure 11.

E. COMPARISON WITH EXISTING SIMILAR WORK
Additionally, we compared the adversarial CFGs generated
by Esmaeili et al. [15] with those of our generated examples.
Esmaeili et al. employed an approach similar to GEA [13],
focusing on feature-space manipulations rather than generat-
ing executable adversarial examples, and argued theoretically
that such an attack could be implemented in the problem
space. Our analysis shows that their adversarial CFGs
introduced significantly more nodes, edges, and instructions
than ours, leading to a substantial increase in binary size,
as demonstrated in Figure 12.

185183

IEEE Access

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

TABLE 5. Transferability across detectors with 30% maximum size change.

Alasmary et al. [9] Detector Gramac Detector [21] Wau et al. [8] Detector Li et al. [12] Detector

St

% RF KNN | SVM | DNN RF KNN | SVM | DNN RF KNN | SVM | MLP MLP

]

E RF 8224 | 62.13 | 11.71 | 1632 | 90.78 | 87.09 | 72.43 | 71.27 | 78.55 | 95.89 | 60.56 | 70.02 59.22

Y

.E KNN | 47.04 | 94.01 | 1843 | 18.61 | 91.95 | 95.15 | 46.31 | 61.34 | 71.93 | 80.95 | 28.85 | 60.21 28.30

172}

=

@ | SVM | 9223 | 94.25 | 69.54 | 59.75 | 90.98 | 89.37 | 79.26 | 87.08 | 97.69 | 97.89 | 74.42 | 97.09 70.17

DNN | 94.88 | 9548 | 6247 | 82.04 | 95.99 | 96.92 | 57.55 | 90.10 | 79.56 | 97.82 | 63.15 | 85.16 50.79

24 24 24 24 24

21| == Malware 21 = RF AEs 21 = KNN AES 21 = SVM AEs 21 == DNN AEs
$18 918 918 918 918
T 15 T 15 T 15 T 15 T 15
5 12 5 12 5 12 5 12 5 12
e 9 e 9) < 9 e 9
= 6 = 6 =6 = 6 = 6

3 3 3 3 3

%0 5 10 15 20 25 30 35 40 45 50 00 5710 15 20 25 30 35 40 45 50 00 5710 15 20 25 30 35 40 45 50 00 516 15 20 25 30 35 40 45 50 00 5710 15 20 25 30 35 40 45 50

No. of Antivirus Engines No. of Antivirus Engines No. of Antivirus Engines No. of Antivirus Engines No. of Antivirus Engines
FIGURE 11. Detection rate of original and manipulated loT malware by antivirus engines.
Comparison in Average % Change in Nodes, Edges, and Instructions REFERENCES

145.3 GEA AEs

RF AEs

SVM AEs
KNN AEs
DNN AEs

140

120.6

120 113.3

100

Average Percentage Change

40

20 14.392.4

1.8

2.9
5.8

6.2
03,539

Instructions

Edges
Metric

Nodes

FIGURE 12. Comparison with Esmaeili et al. [15] approach.

V. CONCLUSION
Despite significant advancements, machine learning-based
malware detection systems remain highly susceptible to
adversarial attacks that disguise malware as benignware. This
study evaluated the robustness of structural IoT malware
detectors against such attacks through binary-level manip-
ulations. We introduced a novel, functionality-preserving
black-box attack that successfully deceived four structural
detectors, an adversarial detector, and several commercial
antivirus engines, achieving up to 100% evasion with minimal
binary size increase. These findings underscore the urgent
need for more resilient and adaptive cybersecurity defenses.
However, our study focused on structural IoT mal-
ware detectors, excluding other types of detectors that
also merit investigation. Additionally, challenges in the
disassembly-reassembly process led to failures with some
malware samples. Future work will employ a more advanced
disassembly-reassembly tool and expand the scope to assess
the robustness of a broader range of detection systems.
Furthermore, we plan to explore defense strategies against
adversarial attacks on malware detection.

185184

[1]

[2]

[3]

[4

=

[5]

[6]

[7

—

[8]

9

—

(10]

(1]

[12]

(13]

Y.-T. Lee, T. Ban, T.-L. Wan, S.-M. Cheng, R. Isawa, T. Takahashi, and
D. Inoue, “Cross platform IoT-malware family classification based on
printable strings,” in Proc. IEEE 19th Int. Conf. Trust, Secur. Privacy
Comput. Commun. (TrustCom), Dec. 2020, pp. 775-784.

M. Al-Fawa’Reh, J. Abu-Khalaf, P. Szewczyk, and J. J. Kang, “MalBoT-
DRL: Malware botnet detection using deep reinforcement learning in
10T networks,” IEEE Internet Things J., vol. 11, no. 6, pp. 9610-9629,
Mar. 2024.

M. Ghahramani, R. Taheri, M. Shojafar, R. Javidan, and S. Wan, “Deep
image: A precious image based deep learning method for online malware
detection in IoT environment,” Internet Things, vol. 27, Jul. 2024,
Art. no. 101300.

E. Odat and Q. M. Yaseen, “A novel machine learning approach for
Android malware detection based on the co-existence of features,” IEEE
Access, vol. 11, pp. 15471-15484, 2023.

H. H. Al-Khshali, M. Ilyas, F. Sohrab, and M. Gabbouj, ‘“Malware
detection with subspace learning-based one-class classification,” IEEE
Access, vol. 12, pp. 81017-81029, 2024.

M. Nobakht, R. Javidan, and A. Pourebrahimi, “SIM-FED: Secure IoT
malware detection model with federated learning,” Comput. Electr. Eng.,
vol. 116, May 2024, Art. no. 109139.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas,
“Malware detection by eating a whole EXE,” in Proc. AAAI, Oct. 2018,
pp- 1-9.

C.-Y. Wu, T. Ban, S.-M. Cheng, T. Takahashi, and D. Inoue, “IoT malware
classification based on reinterpreted function-call graphs,” Comput. Secur.,
vol. 125, Feb. 2023, Art. no. 103060.

H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,
A. Awad, D. Nyang, and A. Mohaisen, ‘“‘Analyzing and detecting emerging
Internet of Things malware: A graph-based approach,” IEEE Internet
Things J., vol. 6, no. 5, pp. 8977-8988, Oct. 2019.

C.-Y. Wu, T. Ban, S.-M. Cheng, B. Sun, and T. Takahashi, “IoT malware
detection using function-call-graph embedding,” in Proc. 18th Int. Conf.
Privacy, Secur. Trust (PST), Dec. 2021, pp. 1-9.

Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H. Nguyen, “A survey of IoT
malware and detection methods based on static features,” ICT Exp., vol. 6,
no. 4, pp. 280-286, Dec. 2020.

C. Li, G. Shen, and W. Sun, “Cross-architecture Intemet-of-Things
malware detection based on graph neural network,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2021, pp. 1-7.

A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based IoT malware
detection systems,” in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2019, pp. 1296-1305.

VOLUME 12, 2024

. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

IEEE Access

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Abusnaina, H. Alasmary, M. Abuhamad, S. Salem, D. Nyang, and
A. Mohaisen, “Subgraph-based adversarial examples against graph-based
IoT malware detection systems,” in Proc. Int. Conf. Comput. Data Soc.
Netw., Nov. 2019, pp. 268-281.

B. Esmaeili, A. Azmoodeh, A. Dehghantanha, G. Srivastava,
H. Karimipour, and J. C.-W. Lin, “A GNN-based adversarial Internet of
Things malware detection framework for critical infrastructure: Studying
gafgyt, mirai, and tsunami campaigns,” IEEE Internet Things J., vol. 11,
no. 16, pp. 26826-26836, Jul. 2023.

J. Séandor, R. Nagy, and L. Buttyan, “Increasing the robustness of a
machine learning-based IoT malware detection method with adversarial
training,” in Proc. ACM Workshop Wireless Secur. Mach. Learn.,
Jun. 2023, pp. 3-8.

A. Abusnaina, A. Anwar, S. Alshamrani, A. Alabduljabbar, R. Jang,
D. Nyang, and D. Mohaisen, ‘“ML-based IoT malware detection under
adversarial settings: A systematic evaluation,” 2021, arXiv:2108.13373.
A. Khormali, A. Abusnaina, S. Chen, D. Nyang, and A. Mohaisen,
“COPYCAT: Practical adversarial attacks on visualization-based malware
detection,” 2019, arXiv:1909.09735.

D. Quoc-Ngo, H. Trung-Nguyen, D. Viet-Nguyen, M. Cong-Dinh,
T. Anh-Phung, and T. Quy-Bui, “Adversarial attack and defense on graph-
based IoT botnet detection approach,” in Proc. Int. Conf. Electr., Commun.,
Comput. Eng. (ICECCE), Jun. 2021, pp. 1-6.

S. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Proc. Adv. Neural Inf. Process. Syst., Dec. 2017,
pp. 4768-47717.

D. Vij, V. Balachandran, T. Thomas, and R. Surendran, “GRAMAC: A
graph based Android malware classification mechanism,” in Proc. 10th
ACM Conf. Data Appl. Secur. Privacy, Mar. 2020, pp. 156-158.

S. Puneeth, S. Lal, M. Pratap Singh, and B. S. Raghavendra, “RMDNet-
deep learning paradigms for effective malware detection and classifica-
tion,” IEEE Access, vol. 12, pp. 82622-82635, 2024.
Developers. (2024). VirusTotal. [Online].
https://www.virustotal.com

A. D. Raju, I. Y. Abualhaol, R. S. Giagone, Y. Zhou, and S. Huang, “A
survey on cross-architectural IoT malware threat hunting,” IEEE Access,
vol. 9, pp. 91686-91709, 2021.

T.-L. Wan, T. Ban, S.-M. Cheng, Y.-T. Lee, B. Sun, R. Isawa, T. Takahashi,
and D. Inoue, “Efficient detection and classification of Internet-of-Things
malware based on byte sequences from executable files,” IEEE Open
J. Comput. Soc., vol. 1, pp. 262-275, 2020.

H. S. Anderson and P. Roth, “EMBER: An open dataset for training static
PE malware machine learning models,” 2018, arXiv:1804.04637.

F. Shahzad and M. Farooq, “‘ELF-miner: Using structural knowledge and
data mining methods to detect new (Linux) malicious executables,” Knowl.
Inf. Syst., vol. 30, no. 3, pp. 589-612, Mar. 2012.

H. Lee, S. Kim, D. Baek, D. Kim, and D. Hwang, ‘Robust IoT malware
detection and classification using opcode category features on machine
learning,” IEEE Access, vol. 11, pp. 18855-18867, 2023.

Y. Liu, H. Fan, J. Zhao, J. Zhang, and X. Yin, “Efficient and generalized
image-based CNN algorithm for multi-class malware detection,” IEEE
Access, vol. 12, pp. 104317-104332, 2024.

A. Mohaisen, O. Alrawi, and M. Mohaisen, “AMAL: High-fidelity,
behavior-based automated malware analysis and classification,” Comput.
Secur., vol. 52, pp. 251-266, Jul. 2015.

M. Abdelsalam, R. K. Yufei, Huang, and R. Sandhu, “Malware detection in
cloud infrastructures using convolutional neural networks,” in Proc. IEEE
11th Int. Conf. Cloud Comput. (CLOUD), Jul. 2018, pp. 162—169.

F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet,
“Deceiving end-to-end deep learning malware detectors using adversarial
examples,” 2018, arXiv:1802.04528.

O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2019, pp. 8-14.

S. Verwer, A. Nadeem, C. Hammerschmidt, L. Bliek, A. Al-Dujaili, and
U.-M. O’Reilly, “The robust malware detection challenge and greedy
random accelerated multi-bit search,” in Proc. 13th ACM Workshop Artif.
Intell. Secur., Nov. 2020, pp. 61-70.

A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in Proc.
IEEE Secur. Privacy Workshops (SPW), May 2018, pp. 76-82.

Available:

VOLUME 12, 2024

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

(44]

[45]

(46]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

(57]

D. Park, H. Khan, and B. Yener, “Generation & evaluation of adversarial
examples for malware obfuscation,” in Proc. 18th IEEE Int. Conf. Mach.
Learn. Appl. (ICMLA), Dec. 2019, pp. 1283-1290.

X.Liu, J. Zhang, Y. Lin, and H. Li, “ATMPA: Attacking machine learning-
based malware visualization detection methods via adversarial examples,”
in Proc. IEEE/ACM 27th Int. Symp. Quality Service (IWQoS), Jun. 2019,
pp. 1-10.

L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Explaining
vulnerabilities of deep learning to adversarial malware binaries,” 2019,
arXiv:1901.03583.

B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert,
and F. Roli, “Adversarial malware binaries: Evading deep learning for
malware detection in executables,” in Proc. 26th Eur. Signal Process. Conf.
(EUSIPCO), Sep. 2018, pp. 533-537.

K. Aryal, M. Gupta, M. Abdelsalam, and M. Saleh, ““Intra-section code
cave injection for adversarial evasion attacks on windows PE malware
file,” 2024, arXiv:2403.06428.

L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, and
F. Roli, “Adversarial EXEmples: A survey and experimental evaluation
of practical attacks on machine learning for windows malware detection,”
ACM Trans. Privacy Secur., vol. 24, no. 4, pp. 1-31, Nov. 2021.

K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre, ‘“Malware
makeover: Breaking ML-based static analysis by modifying executable
bytes,” 2019, arXiv:1912.09064.

K. Zhao, H. Zhou, Y. Zhu, X. Zhan, K. Zhou, J. Li, L. Yu, W. Yuan,
and X. Luo, “Structural attack against graph based Android malware
detection,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2021, pp. 3218-3235.

W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on GAN,” 2017, arXiv:1702.05983.

M. Kawai, K. Ota, and M. Dong, “Improved MalGAN: Avoiding malware
detector by leaning cleanware features,” in Proc. Int. Conf. Artif. Intell. Inf.
Commun. (ICAIIC), Feb. 2019, pp. 040-045.

W. Hu and Y. Tan, “Black-box attacks against RNN based malware
detection algorithms,” in Proc. 32nd AAAI Workshops, Jun. 2018, pp. 1-7.
I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-
box end-to-end attack against state-of-the-art API call-based malware
classifiers,” in Proc. Int. Symp. Res. Attacks Intrusions Defenses,
Sep. 2018, pp. 490-510.

I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Query-efficient
black-box attack against sequence-based malware classifiers,” in Proc.
36th Annu. Comput. Secur. Appl. Conf., Dec. 2020, pp. 611-626.

L. Zhang, P. Liu, Y.-H. Choi, and P. Chen, ‘“Semantics-preserving
reinforcement learning attack against graph neural networks for malware
detection,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 2,
pp. 1390-1402, Feb. 2023.

H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine
learning malware detection,” in Proc. Black Hat, Las Vegas, NV, USA,
Jul. 2017, pp. 1-6.

C. Wu, J. Shi, Y. Yang, and W. Li, “Enhancing machine learning based
malware detection model by reinforcement learning,” in Proc. 8th Int.
Conf. Commun. Netw. Secur. (ICCNS), Nov. 2018, pp. 74-78.

X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android HIV: A study of repackaging malware for evading
machine-learning detection,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 987-1001, 2020.

R. L. Castro, C. Schmitt, and G. Dreo, “AIMED: Evolving malware with
genetic programming to evade detection,” in Proc. 18th IEEE Int. Conf.
Trust, Secur. Privacy Comput. Commun. 13th IEEE Int. Conf. Big Data
Sci. Eng. (TrustCom/BigDataSE), Aug. 2019, pp. 240-247.

X. Wang and R. Miikkulainen, “MDEA: Malware detection with
evolutionary adversarial learning,” in Proc. IEEE Congr. Evol. Comput.
(CEC), Jul. 2020, pp. 1-8.

R. L. Castro, C. Schmitt, and G. D. Rodosek, “ARMED: How automatic
malware modifications can evade static detection?” in Proc. 5th Int. Conf.
Inf. Manage. (ICIM), Mar. 2019, pp. 20-27.

J. Yuan, S. Zhou, L. Lin, F. Wang, and J. Cui, “Black-box adversarial
attacks against deep learning-based malware binaries detection with
GAN,” in Proc. ECAI, 2020, pp. 2536-2542.

F. Zhong, X. Cheng, D. Yu, B. Gong, S. Song, and J. Yu, “MalFox:
Camouflaged adversarial malware example generation based on conv-
GANSs against black-box detectors,” IEEE Trans. Comput., vol. 73, no. 4,
pp- 980-993, Jan. 2023.

185185

IEEE Access

M. B. Mwangi, S.-M. Cheng: Adversarial Attack on ML-Based loT Malware Detection

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre, ‘“Malware
makeover: Breaking ML-based static analysis by modifying executable
bytes,” in Proc. ACM Asia Conf. Comput. Commun. Secur., May 2021,
pp. 744-758.

L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models (extended version),” ACM Trans.
Privacy Secur., vol. 22, no. 2, pp. 1-34, Apr. 2019.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck, “Drebin:
Effective and explainable detection of Android malware in your pocket,”
in Proc. NDSS, 2014, pp. 23-26.

H. Bostani and V. Moonsamy, “EvadeDroid: A practical evasion attack
on machine learning for black-box Android malware detection,” Comput.
Secur., vol. 139, Jan. 2024, Art. no. 103676.

Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, “Evading anti-
malware engines with deep reinforcement learning,” IEEE Access, vol. 7,
pp. 48867-48879, 2019.

J. Chen, J. Jiang, R. Li, and Y. Dou, “Generating adversarial examples
for static PE malware detector based on deep reinforcement learning,”
J. Phys., Conf. Ser., vol. 1575, no. 1, Jun. 2020, Art. no. 012011.

B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial examples for
CNN-based malware detectors,” IEEE Access, vol. 7, pp. 54360-54371,
2019.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proc. IEEE Symp. Secur. Privacy, May 2014,
pp. 276-291.

S. Blazy and A. Trieu, “Formal verification of control-flow graph
flattening,” in Proc. 5th ACM SIGPLAN Conf. Certified Programs Proofs,
Jan. 2016, pp. 176-187.

H. Wang, S. Wang, D. Xu, X. Zhang, and X. Liu, “Generating effective
software obfuscation sequences with reinforcement learning,” IEEE Trans.
Dependable Secure Comput., vol. 19, no. 3, pp. 1900-1917, Dec. 2022.
Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “SOK: (State
of) the art of war: Offensive techniques in binary analysis,” in Proc. S&P,
May 2016, pp. 138-157.

R. Team. (2024). Radare2 Github Repository. [Online]. Available:
https://github.com/radare/radare2

A. Hagberg, P. Swart, and D. Chult, “Exploring network structure,
dynamics, and function using NetworkX,” in Proc. SciPy, Jun. 2008,
pp. 11-15.

S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in Proc.
USENIX Secur., Aug. 2015, pp. 627-642.

185186

MAINA BERNARD MWANGI (Graduate Stu-
dent Member, IEEE) received the M.Sc. degree
in computer science and information engineering
from the National Taiwan University of Science
and Technology, Taipei, Taiwan, in 2021, where he
is currently pursuing the Ph.D. degree in computer
science and information engineering. His research
interests include the IoT and Al security.

SHIN-MING CHENG (Member, IEEE) received
the B.S. and Ph.D. degrees in computer sci-
ence and information engineering from National
Taiwan University, Taipei, Taiwan, in 2000 and
2007, respectively. Since 2012, he has been a
Faculty Member of the Department of Computer
Science and Information Engineering, National
Taiwan University of Science and Technology,
Taipei, where he is currently a Professor. Since
2022, he has been the Deputy Director-General in
Administration for Cyber Security, Ministry of Digital Affairs. His current
interests include mobile network security, the IoT system security, malware
analysis, and Al robustness. He has received the IEEE Trustcom 2020 Best
Paper Awards.

VOLUME 12, 2024

